Quaternions

The quaternion are the elements of \mathcal{Q}, a four-dimensional vector space on the field of reals with basis elements e, j, k, l and the rules of multiplication

$$
\begin{gathered}
e e=e \quad j j=k k=l l=-e \\
e j=j e=j \quad e k=k e=k \quad e l=l e=l \\
j k=l \quad k j=-l \\
k l=j \quad l k=-j \\
l j=k \quad j l=-k
\end{gathered}
$$

Such structure seems very promising for the description of space-time, since e can be compared with \vec{e}_{0} and j, k, l with respectively $\vec{e}_{j}, \vec{e}_{k}, \vec{e}_{l}$.

But a difficulty appears with the product, since $\vec{e}_{j} \wedge \vec{e}_{k}$ even in R^{3} is not a vector ; it is an axial vector and must be noted \breve{e}_{l} as for the magnetic field \breve{B}. Moreover you can not continue the correspondence since $\breve{e}_{l} \wedge \breve{e}_{k}$ has no meaning. In fact such an expression never appears in Maxwell theory.
Given at the IARD 2004 Conference, Saas-Fee Switzerland

