Morphisms, Hemimorphisms and Baer *-Semigroups

C. Piron¹

The relationship between CROCs (complete orthomodular lattices) and complete Baer *semigroups is discussed using an explicit construction of the adjoint of a hemimorphism. Simple examples provide much insight into the structures involved.

1. Preliminaries

A CROC is nothing else than a complete orthomodular lattice (Piron 1976). We call it a CROC as it is canonically relatively orthocomplemented, which means that each segment [0, a], that is the set of elements between 0 and a, is by itself a complete orthomodular lattice, where the orthocomplementation is defined by $x^r = x' \wedge a$. A hemimorphism from a CROC \mathcal{A} to a CROC \mathcal{B} is a map ϕ from \mathcal{A} to \mathcal{B} which maps 0 to 0 and preserves the supremum:

$$\phi(\vee_i a_i) = \vee_i \phi(a_i).$$

According to the usual definitions a hemimorphism which conserves the orthogonality relation is called a morphism.

A complete Baer *-semigroup is a set S equipped with (Foulis 1960, see also Pool 1968)

(i) an associative multiplication law with a (necessarily unique) 0 and I:

$$\begin{split} (fg)h &= f(gh),\\ 0f &= f0 = 0 \qquad \forall f \in S,\\ If &= fI = f \qquad \forall f \in S, \end{split}$$

and

(*ii*) an involution $f \mapsto f^*$:

$$f^{**} = f,$$

 $(fg)^* = g^* f^*,$

¹ Preprint UGVA-DPT 1994/09-859

in such a way that

(*iii*) each annihilator $\{f \mid fg = 0 \quad \forall g \in M \subset S\}$ is an ideal of the form Sp, where p is a projection, that is an element of S such that

$$p = p^* = p^2.$$

One can easily show that 0 and I are projections and that the annihilator of 0 is generated by I and that of I by 0.

The aim of the next two sections is to show that these two structures are intimately linked. Finally we consider an instructive example in section 4.

2. The complete Baer *-semigroup associated to a CROC

Let $\phi : \mathcal{A} \to \mathcal{B}$ and $\psi : \mathcal{B} \to \mathcal{A}$ be hemimorphisms. Then by definition ϕ and ψ form an adjoint pair if the following two conditions are satisfied:

$$egin{array}{ll} \psi(\phi a)' < a' & orall a \in \mathcal{A}, \ \phi(\psi b)' < b' & orall b \in \mathcal{B}. \end{array}$$

Surprisingly, given any hemimorphism ϕ there exists a hemimorphism ψ such that ϕ and ψ form an adjoint pair. More precisely we have

Lemma: Each hemimorphism $\phi : \mathcal{A} \to \mathcal{B}$ has a unique adjoint $\phi^* : \mathcal{B} \to \mathcal{A}$ given by

$$\phi^* b = \bigwedge_{\phi a < b'} a'.$$

Proof: We first show unicity. Let ϕ^* and ϕ^+ be adjoint to ϕ and set $\phi^*b = a$. Then $\phi a' = \phi(\phi^*b)' < b'$ since ϕ and ϕ^* are adjoint. Hence $b < (\phi a')'$. But then, since ϕ^+ is monotone we have that $\phi^+b < \phi^+(\phi a')' < a = \phi^*b$, where we have used the fact that ϕ and ϕ^+ are adjoint. Interchanging the roles of ϕ^* and ϕ^+ we have that $\phi^* = \phi^+$.

We now show existence. Define $\phi^* b = \bigwedge_{\phi a < b'} a$. We first show that ϕ^* is a hemimorphism. It is trivial that $\phi^* 0 = 0$. Further,

$$\phi^*(\vee_i b_i) = \bigwedge_{\phi a < (\vee_i b_i)'} a = \bigwedge_{\phi a < b'_i} \forall b_i a = \vee_i \phi^*(b_i).$$

We now show that ϕ and ϕ^* form an adjoint pair. We have that $\phi^*(\phi a)' = \bigwedge_{\substack{\phi x < \phi a \\ \phi a < b'}} x' < a'$, by considering x = a. On the other hand, $\phi(\phi^*b)' = \phi(\bigwedge_{\substack{\phi a < b'}} a')' = \phi(\bigvee_{\substack{\phi a < b'}} a) = \bigvee_{\substack{\phi a < b'}} \phi a < b'$, where we have used the fact that ϕ preserves the supremum, completing the proof.

Example: Let J_a be the canonical injection $J_a : [0, a] \to \mathcal{A}$. We show that $J_a^* J_a = I$ on [0, a] and that $J_a J_a^* = \phi_a$ on \mathcal{A} , where ϕ_a is the Sasaki projection defined by $\phi_a x = (x \lor a') \land a$. The projections are then self-adjoint and idempotent: $\phi_a = \phi_a^* = \phi_a^2$. Indeed, for $x \in \mathcal{A}$ and $y \in [0, a]$ we have that

$$J_a^* x = \bigwedge_{J_a y < x'} y^r = \left(\bigvee_{\substack{y < a \\ y < x'}} y\right)^r = (a \land x')^r = (x \lor a') \land a$$

and hence $J_a^*J_ay = J_a^*y = y$ (exactly the orthomodularity condition) and

$$J_a J_a^* x = (x \lor a') \land a = \phi_a x.$$

Example: We show that a hemimorphism u is an isomorphism if and only if $u^* = u^{-1}$. Indeed, let u be an isomorphism, then $u(u^{-1}b)' = (uu^{-1}b)' = b'$ and $u^{-1}(ua)' = (u^{-1}ua)' = a'$ so that the two conditions on an adjoint pair are satisfied and $u^* = u^{-1}$. Conversely, let $u^{-1} = u^*$, then the first condition imposes that $u^{-1}(ua)' < a'$ which means that (ua)' < ua'. Furthermore, setting b = (ua)' for any given a, the second condition imposes that $u(u^{-1}b)' < b'$ which means $(u^{-1}b)' < u^{-1}b'$ and by substitution $(u^{-1}(ua))' < a$ and also $a' < u^{-1}(ua)'$ and so ua' < (ua)'. Hence ua' = (ua)' and so u is an isomorphism.

Theorem: The set S of hemimorphisms of a CROC \mathcal{A} into itself, equipped with the composition law and the adjoint defined above, forms a complete Baer *-semigroup.

Proof: (i) It is clear that the composition law of hemimorphisms is associative and that the hemimorphisms $a \mapsto 0$ and $a \mapsto a$ play the role of 0 and I respectively.

(*ii*) The adjoint operation $\phi \mapsto \phi^*$ is well-defined and $\phi^{**} = \phi$ since the conditions on an adjoint pair are symmetric. Finally $(\psi\phi)^* = \phi^*\psi^*$ since the two conditions are satisfied. Indeed, from $\psi^*(\psi\phi a)' < (\phi a)'$ we derive the first, $\phi^*\psi^*(\psi\phi a)' < \phi^*(\phi a)' < a'$, and we obtain the second, $\psi\phi(\phi^*\psi^*b)' < b'$, by the same kind of reasoning. (*iii*) Finally let $M \subset S$ and set $a_i = (\phi_i I)'$ for each $\phi_i \in M$. Define $a = \wedge_i a_i$. We show that the annihilator $\{\psi \mid \psi \phi_i = 0 \quad \forall \phi_i \in M\}$ is identical to the ideal $S\phi_a$, where ϕ_a is the Sasaki projection $\phi_a x = (x \vee a') \wedge a$. Obviously $S\phi_a$ will be contained in the annihilator of M since $\phi_a \phi_i = 0$ for each $\phi_i \in M$. Indeed

$$\phi_a \phi_i x < \phi_a \phi_i I = \phi_a a'_i = (a'_i \lor a') \land a = 0.$$

On the other hand, let ψ be in the annihilator of M, $\psi \phi_i = 0$ for all $\phi_i \in M$. We show that $\psi = \psi \phi_a$. Now $\psi(\phi_i I) = 0$ so that $\psi^* I = \psi^* (\psi(\phi_i I))' < (\phi_i I)' = a_i$ and so $\psi^* x < a_i$ for all a_i . Hence $(\phi_a \psi^*) x = \psi^* x$ for all x. This means that $\phi_a \psi^* = \psi^*$, and so $\psi = \psi \phi_a$ by taking the adjoint.

3. The CROC associated to a complete Baer *-semigroup

We can define a partial order relation on the set of projections of a complete Baer *-semigroup by setting p < q if p = pq. This order relation can readily be seen to be identical to the set-theoretical inclusion

$$Sp \subset Sq.$$

To each element $f \in S$ we will associate the projection f' which generates the annihilator of f:

$$\{g \mid gf = 0, g \in S\} = Sf'.$$

Such a projection exists by definition and we have the following properties:

(i) If p is a given projection then p < p''. Indeed, since in particular p'p = 0 then $(p'p)^* = pp' = 0$ and so p is in the annihilator of p'. This means that there exists an f with p = fp'' = fp''p'' = pp''.

(*ii*) If p and q are two projectors such that p < q then q' < p'. Indeed by taking the adjoint of p = pq we find that p = qp which implies q'p = q'(qp) = (q'q)p = 0 and so q' < p'.

From these two properties the map $p \mapsto p''$ is a closure operation and p' = p'''. This justifies the following definition: p is a closed projector if p = p''. Note that 0 and I are closed since 0' = I and I' = 0.

Theorem: The set \mathcal{A} of closed projectors of a complete Baer *-semigroup S, equipped with the partial order defined above and the orthogonality map $p \mapsto p'$, is a CROC.

Proof: (i) To show that \mathcal{A} is a complete lattice it suffices to show that there exists a closed projector $\bigwedge_i p_i$, the infimum of any given family $\{p_i\}$, since there is a maximal element I. Now p < q if and only if $Sp \subset Sq$ and so the infimum of a family $\{p_i\}$ must be associated to $\bigcap_i Sp_i$. However, as each p_i is closed this is just the annihilator of the family $\{p'_i\}$ which is by definition generated by some projection p. It therefore remains to show that p is necessarily closed. Since $p < p_i$ we have that $p'_i < p'$ and so $p'' < p''_i = p_i$ for all p_i . Hence p'' < p. On the other hand p < p'' as p is a projection

(*ii*) We now show that the map $p \mapsto p'$ is an orthocomplementation. We have that p' = p''' so that the map is well-defined. The map is trivially involutive and order reversing. Finally $p \wedge p' = 0$ since if q < p and q < p' then q = qp and q = qp' giving q = qp = qp'p = 0.

(*iii*) The orthomodular law states that if p < q then $(q' \lor p) \land q = p$. In fact it suffices to show that $(q \land p')' \land q < p$ since the opposite inequality is trivial; that is we must show that $(q \land p')' \land q$ is in the annihilator of p'. We use the fact that in general if pq = qpthen pq' = q'p, $q \land p = pq$ and $q \land p' = qp'$. Indeed, let pq = qp. Then (q'p)q = (q'q)p = 0. Hence q'p = q'pq' and so by taking the adjoint q'p = pq'. Further, it is simple to show that if pq = qp then pq is a projection, in fact the projection $p \land q$ (von Neumann 1950). Now pqq = pq so that pq < q and in the same way pq < p. Finally, if r < p and r < qthen r = rp and r = rq so that r = rpq and r < pq. Now let p < q. Then pq = qp so that $q \land p' = qp'$. Then $q(q \land p') = (q \land p')q$ and so $(q \land p')' \land q = (qp')'q$. But then it is trivial that (qp')'qp' = 0, completing the proof.

Theorem: Let \mathcal{A} be a CROC and S the associated Baer *-semigroup. Then the CROC associated to S is exactly \mathcal{A} .

Proof: We need to show that the closed projections of S are exactly of the form ϕ_a for some $a \in \mathcal{A}$. We use the fact that $\phi' = \phi_a$ for $a = (\phi I)'$ as shown in section 2 and so $(\phi_a)' = \phi_{a'}$. Each projection of the form ϕ_a is then closed since $(\phi_a)'' = (\phi_{a'})' = \phi_a$. On the other hand, let ϕ be a closed projection: $\phi = \phi''$. Then $\phi' = \phi_a$ for $a = (\phi I)'$ and so $\phi = \phi'' = (\phi_a)' = \phi_{a'}$, completing the proof.

Note that one cannot pass from a complete Baer *-semigroup to the associated CROC and back again in general. Indeed, let S be any field considered as a complete Baer *semigoup under multiplication, where we take the identity as the involution. Then there are only two projections, namely 0 and I, since $a^2 = a$ implies a(a - 1) = 0. Hence all such S have the same associated trivial CROC {0, 1}. Note that this CROC has only two hemimorphisms as one can send 1 to either 0 or 1.

4. An example

In this final section we will consider the most simple non-trivial CROC which has four elements, namely 0, a, a' and 1. In this case there are sixteen hemimorphisms ϕ , as one can send a and a' independently to an arbitrary element, and set $\phi 1 = \phi a \lor \phi a'$. This example, although very simple, exhibits much of the relevant structure of the set of hemimorphisms. For example, one of the hemimorphisms will be seen to be a projection which is not closed. Further, one can see that the adjoint of a morphism need not be a morphism.

The sixteen hemimorphisms of will be labelled $\phi_{\alpha\beta}$, where α is the image of a' and β is the image of a. Hence, for example, the identity hemimorphism is $\phi_{a'a}$. We give a table giving the adjoint of each hemimorphism and stating whether a given hemimorphism is self-adjoint, idempotent, closed or a morphism.

$\phi_{lphaeta}$	$(\phi_{lphaeta})^*$	self-adjoint	idempotent	closed	morphism
00	0 0	Y	Y	Y	Y
0a	0 a	Y	Y	Y	Y
0a'	a0	Ν	Ν	Ν	Y
01	a a	Ν	Y	Ν	Y
a 0	0a'	N	Ν	Ν	Y
a a	01	Ν	Y	Ν	Ν
aa'	aa'	Y	Ν	Ν	Y
a1	a1	Y	Ν	Ν	Ν
a'0	a'0	Y	Y	Y	Y
a'a	a'a	Y	Y	Y	Y
a'a'	10	Ν	Y	Ν	Ν
a'1	1 a	N	Y	Ν	Ν
10	a'a'	N	Y	Ν	Y
1 a	a'1	Ν	Y	Ν	Ν
1a'	1a'	Y	N	N	Ν
11	11	Y	Y	Ν	Ν

Hence we see that there are four closed projections; ϕ_{00} , ϕ_{0a} , $\phi_{a'0}$ and $\phi_{a'a}$ which regive the original CROC. There is one projection which is not closed, namely ϕ_{11} . Finally there are two morphisms whose adjoints are not morphisms, namely ϕ_{01} and ϕ_{10} .

Acknowledgement

I would like to thank D. J. Moore for useful discussions and a careful reading of the manuscript.

References

D. J. Foulis 1960; Proc. Am. Math. Soc. 11 648.

C. Piron 1976; *Foundations of Quantum Physics*: W. A. Benjamin (Reading Massachusetts).

J. C. T. Pool 1968; Comm. Math. Phys. 9 118.

J. von Neumann 1953; Functional Operators Vol II: The Geometry of Orthogonal Spaces: Princeton University Press (Princeton), Theorem 13.4(1), p.53.