Morphisms, Hemimorphisms and Baer *-Semigroups

C. Piron ${ }^{1}$

The relationship between CROCs (complete orthomodular lattices) and complete Baer *semigroups is discussed using an explicit construction of the adjoint of a hemimorphism. Simple examples provide much insight into the structures involved.

1. Preliminaries

A CROC is nothing else than a complete orthomodular lattice (Piron 1976). We call it a CROC as it is canonically relatively orthocomplemented, which means that each segment $[0, a]$, that is the set of elements between 0 and a, is by itself a complete orthomodular lattice, where the orthocomplementation is defined by $x^{r}=x^{\prime} \wedge a$. A hemimorphism from a CROC \mathcal{A} to a $\operatorname{CROC} \mathcal{B}$ is a map ϕ from \mathcal{A} to \mathcal{B} which maps 0 to 0 and preserves the supremum:

$$
\phi\left(\bigvee_{i} a_{i}\right)=\bigvee_{i} \phi\left(a_{i}\right) .
$$

According to the usual definitions a hemimorphism which conserves the orthogonality relation is called a morphism.

A complete Baer ${ }^{*}$-semigroup is a set S equipped with (Foulis 1960, see also Pool 1968)
(i) an associative multiplication law with a (necessarily unique) 0 and I :

$$
\begin{array}{ll}
(f g) h=f(g h), & \\
0 f=f 0=0 & \forall f \in S, \\
I f=f I=f & \forall f \in S,
\end{array}
$$

and
(ii) an involution $f \mapsto f^{*}$:

$$
\begin{aligned}
& f^{* *}=f \\
& (f g)^{*}=g^{*} f^{*}
\end{aligned}
$$

${ }^{1}$ Preprint UGVA-DPT 1994/09-859
in such a way that
(iii) each annihilator $\{f \mid f g=0 \quad \forall g \in M \subset S\}$ is an ideal of the form $S p$, where p is a projection, that is an element of S such that

$$
p=p^{*}=p^{2}
$$

One can easily show that 0 and I are projections and that the annihilator of 0 is generated by I and that of I by 0 .

The aim of the next two sections is to show that these two structures are intimately linked. Finally we consider an instructive example in section 4.

2. The complete Baer *-semigroup associated to a CROC

Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ and $\psi: \mathcal{B} \rightarrow \mathcal{A}$ be hemimorphisms. Then by definition ϕ and ψ form an adjoint pair if the following two conditions are satisfied:

$$
\begin{array}{ll}
\psi(\phi a)^{\prime}<a^{\prime} & \forall a \in \mathcal{A} \\
\phi(\psi b)^{\prime}<b^{\prime} & \forall b \in \mathcal{B}
\end{array}
$$

Surprisingly, given any hemimorphism ϕ there exists a hemimorphism ψ such that ϕ and ψ form an adjoint pair. More precisely we have

Lemma: Each hemimorphism $\phi: \mathcal{A} \rightarrow \mathcal{B}$ has a unique adjoint $\phi^{*}: \mathcal{B} \rightarrow \mathcal{A}$ given by

$$
\phi^{*} b=\bigwedge_{\phi a<b^{\prime}} a^{\prime} .
$$

Proof: We first show unicity. Let ϕ^{*} and ϕ^{+}be adjoint to ϕ and set $\phi^{*} b=a$. Then $\phi a^{\prime}=\phi\left(\phi^{*} b\right)^{\prime}<b^{\prime}$ since ϕ and ϕ^{*} are adjoint. Hence $b<\left(\phi a^{\prime}\right)^{\prime}$. But then, since ϕ^{+}is monotone we have that $\phi^{+} b<\phi^{+}\left(\phi a^{\prime}\right)^{\prime}<a=\phi^{*} b$, where we have used the fact that ϕ and ϕ^{+}are adjoint. Interchanging the roles of ϕ^{*} and ϕ^{+}we have that $\phi^{*}=\phi^{+}$.

We now show existence. Define $\phi^{*} b=\bigwedge_{\phi a<b^{\prime}} a$. We first show that ϕ^{*} is a hemimorphism. It is trivial that $\phi^{*} 0=0$. Further,

$$
\phi^{*}\left(\vee_{i} b_{i}\right)=\bigwedge_{\phi a<\left(\vee_{i} b_{i}\right)^{\prime}} a=\bigwedge_{\phi a<b_{i}^{\prime} \forall b_{i}} a=\vee_{i} \phi^{*}\left(b_{i}\right) .
$$

We now show that ϕ and ϕ^{*} form an adjoint pair. We have that $\phi^{*}(\phi a)^{\prime}=\bigwedge_{\phi x<\phi a} x^{\prime}<a^{\prime}$, by considering $x=a$. On the other hand, $\phi\left(\phi^{*} b\right)^{\prime}=\phi\left(\bigwedge_{\phi a<b^{\prime}} a^{\prime}\right)^{\prime}=\phi\left(\bigvee_{\phi a<b^{\prime}} a\right)=\bigvee_{\phi a<b^{\prime}} \phi a<b^{\prime}$, where we have used the fact that ϕ preserves the supremum, completing the proof.

Example: Let J_{a} be the canonical injection $J_{a}:[0, a] \rightarrow \mathcal{A}$. We show that $J_{a}^{*} J_{a}=I$ on $[0, a]$ and that $J_{a} J_{a}^{*}=\phi_{a}$ on \mathcal{A}, where ϕ_{a} is the Sasaki projection defined by $\phi_{a} x=$ $\left(x \vee a^{\prime}\right) \wedge a$. The projections are then self-adjoint and idempotent: $\phi_{a}=\phi_{a}^{*}=\phi_{a}^{2}$. Indeed, for $x \in \mathcal{A}$ and $y \in[0, a]$ we have that

$$
J_{a}^{*} x=\bigwedge_{J_{a} y<x^{\prime}} y^{r}=\left(\bigvee_{\substack{y<a \\ y<x^{\prime}}} y\right)^{r}=\left(a \wedge x^{\prime}\right)^{r}=\left(x \vee a^{\prime}\right) \wedge a
$$

and hence $J_{a}^{*} J_{a} y=J_{a}^{*} y=y$ (exactly the orthomodularity condition) and

$$
J_{a} J_{a}^{*} x=\left(x \vee a^{\prime}\right) \wedge a=\phi_{a} x
$$

Example: We show that a hemimorphism u is an isomorphism if and only if $u^{*}=u^{-1}$. Indeed, let u be an isomorphism, then $u\left(u^{-1} b\right)^{\prime}=\left(u u^{-1} b\right)^{\prime}=b^{\prime}$ and $u^{-1}(u a)^{\prime}=\left(u^{-1} u a\right)^{\prime}=$ a^{\prime} so that the two conditions on an adjoint pair are satisfied and $u^{*}=u^{-1}$. Conversely, let $u^{-1}=u^{*}$, then the first condition imposes that $u^{-1}(u a)^{\prime}<a^{\prime}$ which means that $(u a)^{\prime}<u a^{\prime}$. Furthermore, setting $b=(u a)^{\prime}$ for any given a, the second condition imposes that $u\left(u^{-1} b\right)^{\prime}<b^{\prime}$ which means $\left(u^{-1} b\right)^{\prime}<u^{-1} b^{\prime}$ and by substitution $\left(u^{-1}(u a)\right)^{\prime}<a$ and also $a^{\prime}<u^{-1}(u a)^{\prime}$ and so $u a^{\prime}<(u a)^{\prime}$. Hence $u a^{\prime}=(u a)^{\prime}$ and so u is an isomorphism.

Theorem: The set S of hemimorphisms of a CROC \mathcal{A} into itself, equipped with the composition law and the adjoint defined above, forms a complete Baer ${ }^{*}$-semigroup.

Proof: (i) It is clear that the composition law of hemimorphisms is associative and that the hemimorphisms $a \mapsto 0$ and $a \mapsto a$ play the role of 0 and I respectively.
(ii) The adjoint operation $\phi \mapsto \phi^{*}$ is well-defined and $\phi^{* *}=\phi$ since the conditions on an adjoint pair are symmetric. Finally $(\psi \phi)^{*}=\phi^{*} \psi^{*}$ since the two conditions are satisfied. Indeed, from $\psi^{*}(\psi \phi a)^{\prime}<(\phi a)^{\prime}$ we derive the first, $\phi^{*} \psi^{*}(\psi \phi a)^{\prime}<\phi^{*}(\phi a)^{\prime}<a^{\prime}$, and we obtain the second, $\psi \phi\left(\phi^{*} \psi^{*} b\right)^{\prime}<b^{\prime}$, by the same kind of reasoning.
(iii) Finally let $M \subset S$ and set $a_{i}=\left(\phi_{i} I\right)^{\prime}$ for each $\phi_{i} \in M$. Define $a=\wedge_{i} a_{i}$. We show that the annihilator $\left\{\psi \mid \psi \phi_{i}=0 \quad \forall \phi_{i} \in M\right\}$ is identical to the ideal $S \phi_{a}$, where ϕ_{a} is the Sasaki projection $\phi_{a} x=\left(x \vee a^{\prime}\right) \wedge a$. Obviously $S \phi_{a}$ will be contained in the annihilator of M since $\phi_{a} \phi_{i}=0$ for each $\phi_{i} \in M$. Indeed

$$
\phi_{a} \phi_{i} x<\phi_{a} \phi_{i} I=\phi_{a} a_{i}^{\prime}=\left(a_{i}^{\prime} \vee a^{\prime}\right) \wedge a=0 .
$$

On the other hand, let ψ be in the annihilator of $M, \psi \phi_{i}=0$ for all $\phi_{i} \in M$. We show that $\psi=\psi \phi_{a}$. Now $\psi\left(\phi_{i} I\right)=0$ so that $\psi^{*} I=\psi^{*}\left(\psi\left(\phi_{i} I\right)\right)^{\prime}<\left(\phi_{i} I\right)^{\prime}=a_{i}$ and so $\psi^{*} x<a_{i}$ for all a_{i}. Hence $\left(\phi_{a} \psi^{*}\right) x=\psi^{*} x$ for all x. This means that $\phi_{a} \psi^{*}=\psi^{*}$, and so $\psi=\psi \phi_{a}$ by taking the adjoint.

3. The CROC associated to a complete Baer ${ }^{*}$-semigroup

We can define a partial order relation on the set of projections of a complete Baer *-semigroup by setting $p<q$ if $p=p q$. This order relation can readily be seen to be identical to the set-theoretical inclusion

$$
S p \subset S q
$$

To each element $f \in S$ we will associate the projection f^{\prime} which generates the annihilator of f :

$$
\{g \mid g f=0, g \in S\}=S f^{\prime}
$$

Such a projection exists by definition and we have the following properties:
(i) If p is a given projection then $p<p^{\prime \prime}$. Indeed, since in particular $p^{\prime} p=0$ then $\left(p^{\prime} p\right)^{*}=p p^{\prime}=0$ and so p is in the annihilator of p^{\prime}. This means that there exists an f with $p=f p^{\prime \prime}=f p^{\prime \prime} p^{\prime \prime}=p p^{\prime \prime}$.
(ii) If p and q are two projectors such that $p<q$ then $q^{\prime}<p^{\prime}$. Indeed by taking the adjoint of $p=p q$ we find that $p=q p$ which implies $q^{\prime} p=q^{\prime}(q p)=\left(q^{\prime} q\right) p=0$ and so $q^{\prime}<p^{\prime}$.
From these two properties the map $p \mapsto p^{\prime \prime}$ is a closure operation and $p^{\prime}=p^{\prime \prime \prime}$. This justifies the following definition: p is a closed projector if $p=p^{\prime \prime}$. Note that 0 and I are closed since $0^{\prime}=I$ and $I^{\prime}=0$.

Theorem: The set \mathcal{A} of closed projectors of a complete Baer ${ }^{*}$-semigroup S, equipped with the partial order defined above and the orthogonality map $p \mapsto p^{\prime}$, is a CROC.

Proof: (i) To show that \mathcal{A} is a complete lattice it suffices to show that there exists a closed projector $\bigwedge_{i} p_{i}$, the infimum of any given family $\left\{p_{i}\right\}$, since there is a maximal element I. Now $p<q$ if and only if $S p \subset S q$ and so the infimum of a family $\left\{p_{i}\right\}$ must be associated to $\bigcap_{i} S p_{i}$. However, as each p_{i} is closed this is just the annihilator of the family $\left\{p_{i}^{\prime}\right\}$ which is by definition generated by some projection p. It therefore remains to show that p is necessarily closed. Since $p<p_{i}$ we have that $p_{i}^{\prime}<p^{\prime}$ and so $p^{\prime \prime}<p_{i}^{\prime \prime}=p_{i}$ for all p_{i}. Hence $p^{\prime \prime}<p$. On the other hand $p<p^{\prime \prime}$ as p is a projection
(ii) We now show that the map $p \mapsto p^{\prime}$ is an orthocomplementation. We have that $p^{\prime}=p^{\prime \prime \prime}$ so that the map is well-defined. The map is trivially involutive and order reversing. Finally $p \wedge p^{\prime}=0$ since if $q<p$ and $q<p^{\prime}$ then $q=q p$ and $q=q p^{\prime}$ giving $q=q p=q p^{\prime} p=0$.
(iii) The orthomodular law states that if $p<q$ then $\left(q^{\prime} \vee p\right) \wedge q=p$. In fact it suffices to show that $\left(q \wedge p^{\prime}\right)^{\prime} \wedge q<p$ since the opposite inequality is trivial; that is we must show that $\left(q \wedge p^{\prime}\right)^{\prime} \wedge q$ is in the annihilator of p^{\prime}. We use the fact that in general if $p q=q p$ then $p q^{\prime}=q^{\prime} p, q \wedge p=p q$ and $q \wedge p^{\prime}=q p^{\prime}$. Indeed, let $p q=q p$. Then $\left(q^{\prime} p\right) q=\left(q^{\prime} q\right) p=0$. Hence $q^{\prime} p=q^{\prime} p q^{\prime}$ and so by taking the adjoint $q^{\prime} p=p q^{\prime}$. Further, it is simple to show that if $p q=q p$ then $p q$ is a projection, in fact the projection $p \wedge q$ (von Neumann 1950). Now $p q q=p q$ so that $p q<q$ and in the same way $p q<p$. Finally, if $r<p$ and $r<q$ then $r=r p$ and $r=r q$ so that $r=r p q$ and $r<p q$. Now let $p<q$. Then $p q=q p$ so that $q \wedge p^{\prime}=q p^{\prime}$. Then $q\left(q \wedge p^{\prime}\right)=\left(q \wedge p^{\prime}\right) q$ and so $\left(q \wedge p^{\prime}\right)^{\prime} \wedge q=\left(q p^{\prime}\right)^{\prime} q$. But then it is trivial that $\left(q p^{\prime}\right)^{\prime} q p^{\prime}=0$, completing the proof.

Theorem: Let \mathcal{A} be a CROC and S the associated Baer ${ }^{*}$-semigroup. Then the CROC associated to S is exactly \mathcal{A}.

Proof: We need to show that the closed projections of S are exactly of the form ϕ_{a} for some $a \in \mathcal{A}$. We use the fact that $\phi^{\prime}=\phi_{a}$ for $a=(\phi I)^{\prime}$ as shown in section 2 and so $\left(\phi_{a}\right)^{\prime}=\phi_{a^{\prime}}$. Each projection of the form ϕ_{a} is then closed since $\left(\phi_{a}\right)^{\prime \prime}=\left(\phi_{a^{\prime}}\right)^{\prime}=\phi_{a}$. On the other hand, let ϕ be a closed projection: $\phi=\phi^{\prime \prime}$. Then $\phi^{\prime}=\phi_{a}$ for $a=(\phi I)^{\prime}$ and so
$\phi=\phi^{\prime \prime}=\left(\phi_{a}\right)^{\prime}=\phi_{a^{\prime}}$, completing the proof.

Note that one cannot pass from a complete Baer *-semigroup to the associated CROC and back again in general. Indeed, let S be any field considered as a complete Baer ${ }^{*}$ semigoup under multiplication, where we take the identity as the involution. Then there are only two projections, namely 0 and I, since $a^{2}=a$ implies $a(a-1)=0$. Hence all such S have the same associated trivial CROC $\{0,1\}$. Note that this CROC has only two hemimorphisms as one can send 1 to either 0 or 1 .

4. An example

In this final section we will consider the most simple non-trivial CROC which has four elements, namely $0, a, a^{\prime}$ and 1 . In this case there are sixteen hemimorphisms ϕ, as one can send a and a^{\prime} independently to an arbitrary element, and set $\phi 1=\phi a \vee \phi a^{\prime}$. This example, although very simple, exhibits much of the relevant structure of the set of hemimorphisms. For example, one of the hemimorphisms will be seen to be a projection which is not closed. Further, one can see that the adjoint of a morphism need not be a morphism.

The sixteen hemimorphisms of will be labelled $\phi_{\alpha \beta}$, where α is the image of a^{\prime} and β is the image of a. Hence, for example, the identity hemimorphism is $\phi_{a^{\prime} a}$. We give a table giving the adjoint of each hemimorphism and stating whether a given hemimorphism is self-adjoint, idempotent, closed or a morphism.

$\phi_{\alpha \beta}$	$\left(\phi_{\alpha \beta}\right)^{*}$	self-adjoint	idempotent	closed	morphism
00	00	Y	Y	Y	Y
$0 a$	$0 a$	Y	Y	Y	Y
$0 a^{\prime}$	$a 0$	N	N	N	Y
01	$a a$	N	Y	N	Y
$a 0$	$0 a^{\prime}$	N	N	N	Y
$a a$	01	N	Y	N	N
$a a^{\prime}$	$a a^{\prime}$	Y	N	N	Y
$a 1$	$a 1$	Y	N	N	N
$a^{\prime} 0$	$a^{\prime} 0$	Y	Y	Y	Y
$a^{\prime} a$	$a^{\prime} a$	Y	Y	Y	Y
$a^{\prime} a^{\prime}$	10	N	Y	N	N
$a^{\prime} 1$	$1 a$	N	Y	N	N
10	$a^{\prime} a^{\prime}$	N	Y	N	Y
$1 a$	$a^{\prime} 1$	N	Y	N	N
$1 a^{\prime}$	$1 a^{\prime}$	Y	N	N	N
11	11	Y	Y	N	N

Hence we see that there are four closed projections; $\phi_{00}, \phi_{0 a}, \phi_{a^{\prime} 0}$ and $\phi_{a^{\prime} a}$ which regive the original CROC. There is one projection which is not closed, namely ϕ_{11}. Finally there are two morphisms whose adjoints are not morphisms, namely ϕ_{01} and ϕ_{10}.

Acknowledgement

I would like to thank D. J. Moore for useful discussions and a careful reading of the manuscript.

References

D. J. Foulis 1960; Proc. Am. Math. Soc. 11648.
C. Piron 1976; Foundations of Quantum Physics: W. A. Benjamin (Reading Massachusetts).
J. C. T. Pool 1968; Comm. Math. Phys. 9118.
J. von Neumann 1953; Functional Operators Vol II: The Geometry of Orthogonal Spaces: Princeton University Press (Princeton), Theorem 13.4(1), p.53.

