
Morphisms, Hemimorphisms and Baer ∗-Semigroups

C. Piron1

The relationship between CROCs (complete orthomodular lattices) and complete Baer ∗-

semigroups is discussed using an explicit construction of the adjoint of a hemimorphism.

Simple examples provide much insight into the structures involved.

1. Preliminaries

A CROC is nothing else than a complete orthomodular lattice (Piron 1976). We call it

a CROC as it is canonically relatively orthocomplemented, which means that each segment

[0, a], that is the set of elements between 0 and a, is by itself a complete orthomodular

lattice, where the orthocomplementation is defined by xr = x′ ∧ a. A hemimorphism from

a CROC A to a CROC B is a map φ from A to B which maps 0 to 0 and preserves the

supremum:

φ(∨iai) = ∨iφ(ai).

According to the usual definitions a hemimorphism which conserves the orthogonality

relation is called a morphism.

A complete Baer ∗-semigroup is a set S equipped with (Foulis 1960, see also Pool

1968)

(i) an associative multiplication law with a (necessarily unique) 0 and I:

(fg)h = f(gh),

0f = f0 = 0 ∀f ∈ S,

If = fI = f ∀f ∈ S,

and

(ii) an involution f 7→ f∗:
f∗∗ = f,

(fg)∗ = g∗f∗,
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in such a way that

(iii) each annihilator {f | fg = 0 ∀g ∈ M ⊂ S} is an ideal of the form Sp, where p is a

projection, that is an element of S such that

p = p∗ = p2.

One can easily show that 0 and I are projections and that the annihilator of 0 is generated

by I and that of I by 0.

The aim of the next two sections is to show that these two structures are intimately

linked. Finally we consider an instructive example in section 4.

2. The complete Baer ∗-semigroup associated to a CROC

Let φ : A → B and ψ : B → A be hemimorphisms. Then by definition φ and ψ form

an adjoint pair if the following two conditions are satisfied:

ψ(φa)′ < a′ ∀a ∈ A,

φ(ψb)′ < b′ ∀b ∈ B.

Surprisingly, given any hemimorphism φ there exists a hemimorphism ψ such that φ and

ψ form an adjoint pair. More precisely we have

Lemma: Each hemimorphism φ : A → B has a unique adjoint φ∗ : B → A given by

φ∗b =
∧

φa<b′

a′.

Proof: We first show unicity. Let φ∗ and φ+ be adjoint to φ and set φ∗b = a. Then

φa′ = φ(φ∗b)′ < b′ since φ and φ∗ are adjoint. Hence b < (φa′)′. But then, since φ+ is

monotone we have that φ+b < φ+(φa′)′ < a = φ∗b, where we have used the fact that φ

and φ+ are adjoint. Interchanging the roles of φ∗ and φ+ we have that φ∗ = φ+.

We now show existence. Define φ∗b =
∧

φa<b′
a. We first show that φ∗ is a hemimor-

phism. It is trivial that φ∗0 = 0. Further,

φ∗(∨ibi) =
∧

φa<(∨ibi)′
a =

∧

φa<b′
i
∀bi

a = ∨iφ∗(bi).
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We now show that φ and φ∗ form an adjoint pair. We have that φ∗(φa)′ =
∧

φx<φa

x′ < a′, by

considering x = a. On the other hand, φ(φ∗b)′ = φ(
∧

φa<b′
a′)′ = φ(

∨

φa<b′
a) =

∨

φa<b′
φa < b′,

where we have used the fact that φ preserves the supremum, completing the proof.

Example: Let Ja be the canonical injection Ja : [0, a] → A. We show that J∗aJa = I

on [0, a] and that JaJ
∗
a = φa on A, where φa is the Sasaki projection defined by φax =

(x∨ a′)∧ a. The projections are then self-adjoint and idempotent: φa = φ∗a = φ2a. Indeed,

for x ∈ A and y ∈ [0, a] we have that

J∗ax =
∧

Jay<x′

yr =
(
∨

y<a

y<x′

y
)r

= (a ∧ x′)r = (x ∨ a′) ∧ a

and hence J∗aJay = J∗ay = y (exactly the orthomodularity condition) and

JaJ
∗
ax = (x ∨ a′) ∧ a = φax.

Example: We show that a hemimorphism u is an isomorphism if and only if u∗ = u−1.

Indeed, let u be an isomorphism, then u(u−1b)′ = (uu−1b)′ = b′ and u−1(ua)′ = (u−1ua)′ =

a′ so that the two conditions on an adjoint pair are satisfied and u∗ = u−1. Conversely,

let u−1 = u∗, then the first condition imposes that u−1(ua)′ < a′ which means that

(ua)′ < ua′. Furthermore, setting b = (ua)′ for any given a, the second condition imposes

that u(u−1b)′ < b′ which means (u−1b)′ < u−1b′ and by substitution (u−1(ua))′ < a and

also a′ < u−1(ua)′ and so ua′ < (ua)′. Hence ua′ = (ua)′ and so u is an isomorphism.

Theorem: The set S of hemimorphisms of a CROC A into itself, equipped with the

composition law and the adjoint defined above, forms a complete Baer ∗-semigroup.

Proof: (i) It is clear that the composition law of hemimorphisms is associative and that

the hemimorphisms a 7→ 0 and a 7→ a play the role of 0 and I respectively.

(ii) The adjoint operation φ 7→ φ∗ is well-defined and φ∗∗ = φ since the conditions

on an adjoint pair are symmetric. Finally (ψφ)∗ = φ∗ψ∗ since the two conditions are

satisfied. Indeed, from ψ∗(ψφa)′ < (φa)′ we derive the first, φ∗ψ∗(ψφa)′ < φ∗(φa)′ < a′,

and we obtain the second, ψφ(φ∗ψ∗b)′ < b′, by the same kind of reasoning.
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(iii) Finally let M ⊂ S and set ai = (φiI)
′ for each φi ∈ M . Define a = ∧iai. We

show that the annihilator {ψ | ψφi = 0 ∀φi ∈ M} is identical to the ideal Sφa, where

φa is the Sasaki projection φax = (x ∨ a′) ∧ a. Obviously Sφa will be contained in the

annihilator of M since φaφi = 0 for each φi ∈M . Indeed

φaφix < φaφiI = φaa
′
i = (a′i ∨ a′) ∧ a = 0.

On the other hand, let ψ be in the annihilator of M , ψφi = 0 for all φi ∈ M . We show

that ψ = ψφa. Now ψ(φiI) = 0 so that ψ∗I = ψ∗(ψ(φiI))
′ < (φiI)

′ = ai and so ψ∗x < ai

for all ai. Hence (φaψ
∗)x = ψ∗x for all x. This means that φaψ

∗ = ψ∗, and so ψ = ψφa

by taking the adjoint.

3. The CROC associated to a complete Baer ∗-semigroup

We can define a partial order relation on the set of projections of a complete Baer

∗-semigroup by setting p < q if p = pq. This order relation can readily be seen to be

identical to the set-theoretical inclusion

Sp ⊂ Sq.

To each element f ∈ S we will associate the projection f ′ which generates the annihilator

of f :

{g | gf = 0, g ∈ S} = Sf ′.

Such a projection exists by definition and we have the following properties:

(i) If p is a given projection then p < p′′. Indeed, since in particular p′p = 0 then

(p′p)∗ = pp′ = 0 and so p is in the annihilator of p′. This means that there exists an f

with p = fp′′ = fp′′p′′ = pp′′.

(ii) If p and q are two projectors such that p < q then q′ < p′. Indeed by taking the adjoint

of p = pq we find that p = qp which implies q′p = q′(qp) = (q′q)p = 0 and so q′ < p′.

From these two properties the map p 7→ p′′ is a closure operation and p′ = p′′′. This

justifies the following definition: p is a closed projector if p = p′′. Note that 0 and I are

closed since 0′ = I and I ′ = 0.

4



Theorem: The set A of closed projectors of a complete Baer ∗-semigroup S, equipped

with the partial order defined above and the orthogonality map p 7→ p′, is a CROC.

Proof: (i) To show that A is a complete lattice it suffices to show that there exists a closed

projector
∧

i pi, the infimum of any given family {pi}, since there is a maximal element I.

Now p < q if and only if Sp ⊂ Sq and so the infimum of a family {pi} must be associated

to
⋂

i Spi. However, as each pi is closed this is just the annihilator of the family {p′i}

which is by definition generated by some projection p. It therefore remains to show that

p is necessarily closed. Since p < pi we have that p′i < p′ and so p′′ < p′′i = pi for all pi.

Hence p′′ < p. On the other hand p < p′′ as p is a projection

(ii) We now show that the map p 7→ p′ is an orthocomplementation. We have

that p′ = p′′′ so that the map is well-defined. The map is trivially involutive and order

reversing. Finally p ∧ p′ = 0 since if q < p and q < p′ then q = qp and q = qp′ giving

q = qp = qp′p = 0.

(iii) The orthomodular law states that if p < q then (q′ ∨ p) ∧ q = p. In fact it

suffices to show that (q∧p′)′∧q < p since the opposite inequality is trivial; that is we must

show that (q ∧ p′)′ ∧ q is in the annihilator of p′. We use the fact that in general if pq = qp

then pq′ = q′p, q ∧ p = pq and q ∧ p′ = qp′. Indeed, let pq = qp. Then (q′p)q = (q′q)p = 0.

Hence q′p = q′pq′ and so by taking the adjoint q′p = pq′. Further, it is simple to show

that if pq = qp then pq is a projection, in fact the projection p ∧ q (von Neumann 1950).

Now pqq = pq so that pq < q and in the same way pq < p. Finally, if r < p and r < q

then r = rp and r = rq so that r = rpq and r < pq. Now let p < q. Then pq = qp so that

q ∧ p′ = qp′. Then q(q ∧ p′) = (q ∧ p′)q and so (q ∧ p′)′ ∧ q = (qp′)′q. But then it is trivial

that (qp′)′qp′ = 0, completing the proof.

Theorem: Let A be a CROC and S the associated Baer ∗-semigroup. Then the CROC

associated to S is exactly A.

Proof: We need to show that the closed projections of S are exactly of the form φa for

some a ∈ A. We use the fact that φ′ = φa for a = (φI)′ as shown in section 2 and so

(φa)
′ = φa′ . Each projection of the form φa is then closed since (φa)

′′ = (φa′)
′ = φa. On

the other hand, let φ be a closed projection: φ = φ′′. Then φ′ = φa for a = (φI)′ and so
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φ = φ′′ = (φa)
′ = φa′ , completing the proof.

Note that one cannot pass from a complete Baer ∗-semigroup to the associated CROC

and back again in general. Indeed, let S be any field considered as a complete Baer ∗-

semigoup under multiplication, where we take the identity as the involution. Then there

are only two projections, namely 0 and I, since a2 = a implies a(a − 1) = 0. Hence all

such S have the same associated trivial CROC {0, 1}. Note that this CROC has only two

hemimorphisms as one can send 1 to either 0 or 1.

4. An example

In this final section we will consider the most simple non-trivial CROC which has

four elements, namely 0, a, a′ and 1. In this case there are sixteen hemimorphisms φ,

as one can send a and a′ independently to an arbitrary element, and set φ1 = φa ∨ φa′.

This example, although very simple, exhibits much of the relevant structure of the set of

hemimorphisms. For example, one of the hemimorphisms will be seen to be a projection

which is not closed. Further, one can see that the adjoint of a morphism need not be a

morphism.

The sixteen hemimorphisms of will be labelled φαβ , where α is the image of a′ and β

is the image of a. Hence, for example, the identity hemimorphism is φa′a. We give a table

giving the adjoint of each hemimorphism and stating whether a given hemimorphism is

self-adjoint, idempotent, closed or a morphism.
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φαβ (φαβ)
∗ self-adjoint idempotent closed morphism

0 0 0 0 Y Y Y Y
0 a 0 a Y Y Y Y
0a′ a 0 N N N Y
01 a a N Y N Y
a 0 0a′ N N N Y
a a 0 1 N Y N N
aa′ aa′ Y N N Y
a 1 a 1 Y N N N
a′0 a′0 Y Y Y Y
a′a a′a Y Y Y Y
a′a′ 1 0 N Y N N
a′1 1 a N Y N N
10 a′a′ N Y N Y
1 a a′1 N Y N N
1a′ 1a′ Y N N N
11 1 1 Y Y N N

Hence we see that there are four closed projections; φ00, φ0a, φa′0 and φa′a which

regive the original CROC. There is one projection which is not closed, namely φ11. Finally

there are two morphisms whose adjoints are not morphisms, namely φ01 and φ10.
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